串口1 用定时器1不工作BUG
大家好,请教一下有关串口1用定时器1作波特率时无法工作(暂未找到原因)串口及定时器相关函数如下:
这是串口1初始化函数
void XC1_init(u16 BaudRate)
{
COMx_InitDefine COMx_InitStructure;
COMx_InitStructure.UART_Mode = UART_8bit_BRTx;
COMx_InitStructure.UART_BRT_Use = BRT_Timer1; (此处改BRT_Timer2时可以正常工作)
COMx_InitStructure.UART_BaudRate= BaudRate;
COMx_InitStructure.UART_RxEnable= ENABLE;
COMx_InitStructure.BaudRateDouble = DISABLE;
COMx_InitStructure.UART_Interrupt = ENABLE;
COMx_InitStructure.UART_Polity = Polity_1;
COMx_InitStructure.UART_P_SW = UART1_SW_P30_P31;
UART_Configuration(UART1, &COMx_InitStructure);
}
这是串口2初始化函数:
void XC2_init(u16 BaudRate)
{
COMx_InitDefine COMx_InitStructure;
COMx_InitStructure.UART_Mode = UART_8bit_BRTx;
COMx_InitStructure.UART_BRT_Use = BRT_Timer2;
COMx_InitStructure.UART_BaudRate= BaudRate;
COMx_InitStructure.UART_RxEnable= ENABLE;
COMx_InitStructure.BaudRateDouble = DISABLE;
COMx_InitStructure.UART_Interrupt = ENABLE;
COMx_InitStructure.UART_Polity = Polity_1;
COMx_InitStructure.UART_P_SW = UART2_SW_P10_P11;
UART_Configuration(UART2, &COMx_InitStructure);
}
这是UART_Configuration串口初始化程序(用库、未改)
u8 UART_Configuration(u8 UARTx, COMx_InitDefine *COMx)
{
u8 i;
u32 j;
#ifdef UART1
if(UARTx == UART1)
{
COM1.id = 1;
COM1.TX_read = 0;
COM1.TX_write = 0;
COM1.B_TX_busy= 0;
COM1.RX_Cnt = 0;
COM1.RX_TimeOut = 0;
COM1.B_RX_OK = 0;
for(i=0; i<COM_TX1_Lenth; i++) TX1_Buffer = 0;
for(i=0; i<COM_RX1_Lenth; i++) RX1_Buffer = 0;
if(COMx->UART_Polity > Polity_3) return 2; //错误
UART1_Polity(COMx->UART_Polity); //指定中断优先级(低到高) Polity_0,Polity_1,Polity_2,Polity_3
if(COMx->UART_Mode > UART_9bit_BRTx) return 2; //模式错误
SCON = (SCON & 0x3f) | COMx->UART_Mode;
if((COMx->UART_Mode == UART_9bit_BRTx) || (COMx->UART_Mode == UART_8bit_BRTx)) //可变波特率
{
j = (MAIN_Fosc / 4) / COMx->UART_BaudRate; //按1T计算
if(j >= 65536UL) return 2; //错误
j = 65536UL - j;
if(COMx->UART_BRT_Use == BRT_Timer1)
{
TR1 = 0;
AUXR &= ~0x01; //S1 BRT Use Timer1;
TMOD &= ~(1<<6); //Timer1 set As Timer
TMOD &= ~0x30; //Timer1_16bitAutoReload;
AUXR |=(1<<6); //Timer1 set as 1T mode
TH1 = (u8)(j>>8);
TL1 = (u8)j;
ET1 = 0; //禁止中断
TMOD &= ~0x40; //定时
INT_CLKO &= ~0x02; //不输出时钟
TR1= 1;
}
else if(COMx->UART_BRT_Use == BRT_Timer2)
{
AUXR &= ~(1<<4); //Timer stop
AUXR |= 0x01; //S1 BRT Use Timer2;
AUXR &= ~(1<<3); //Timer2 set As Timer
AUXR |=(1<<2); //Timer2 set as 1T mode
TH2 = (u8)(j>>8);
TL2 = (u8)j;
IE2&= ~(1<<2); //禁止中断
AUXR |=(1<<4); //Timer run enable
}
else return 2; //错误
}
else if(COMx->UART_Mode == UART_ShiftRight)
{
if(COMx->BaudRateDouble == ENABLE) AUXR |=(1<<5); //固定波特率SysClk/2
else AUXR &= ~(1<<5); //固定波特率SysClk/12
}
else if(COMx->UART_Mode == UART_9bit) //固定波特率SysClk*2^SMOD/64
{
if(COMx->BaudRateDouble == ENABLE) PCON |=(1<<7); //固定波特率SysClk/32
else PCON &= ~(1<<7); //固定波特率SysClk/64
}
if(COMx->UART_Interrupt == ENABLE) ES = 1; //允许中断
else ES = 0; //禁止中断
if(COMx->UART_RxEnable == ENABLE) REN = 1; //允许接收
else REN = 0; //禁止接收
P_SW1 = (P_SW1 & 0x3f) | (COMx->UART_P_SW & 0xc0); //切换IO
return 0;
}
#endif
#ifdef UART2
if(UARTx == UART2)
{
COM2.id = 2;
COM2.TX_read = 0;
COM2.TX_write = 0;
COM2.B_TX_busy= 0;
COM2.RX_Cnt = 0;
COM2.RX_TimeOut = 0;
COM2.B_RX_OK = 0;
for(i=0; i<COM_TX2_Lenth; i++) TX2_Buffer = 0;
for(i=0; i<COM_RX2_Lenth; i++) RX2_Buffer = 0;
if((COMx->UART_Mode == UART_9bit_BRTx) ||(COMx->UART_Mode == UART_8bit_BRTx)) //可变波特率
{
if(COMx->UART_Polity > Polity_3) return 2; //错误
UART2_Polity(COMx->UART_Polity); //指定中断优先级(低到高) Polity_0,Polity_1,Polity_2,Polity_3
if(COMx->UART_Mode == UART_9bit_BRTx) S2CON |=(1<<7); //9bit
else S2CON &= ~(1<<7); //8bit
j = (MAIN_Fosc / 4) / COMx->UART_BaudRate; //按1T计算
if(j >= 65536UL) return 2; //错误
j = 65536UL - j;
AUXR &= ~(1<<4); //Timer stop
AUXR &= ~(1<<3); //Timer2 set As Timer
AUXR |=(1<<2); //Timer2 set as 1T mode
TH2 = (u8)(j>>8);
TL2 = (u8)j;
IE2&= ~(1<<2); //禁止中断
AUXR |=(1<<4); //Timer run enable
}
else return 2; //模式错误
if(COMx->UART_Interrupt == ENABLE) IE2 |=1; //允许中断
else IE2 &= ~1; //禁止中断
if(COMx->UART_RxEnable == ENABLE) S2CON |=(1<<4); //允许接收
else S2CON &= ~(1<<4); //禁止接收
P_SW2 = (P_SW2 & ~1) | (COMx->UART_P_SW & 0x01); //切换IO
return 0;
}
#endif
#ifdef UART3
if(UARTx == UART3)
{
COM3.id = 3;
COM3.TX_read = 0;
COM3.TX_write = 0;
COM3.B_TX_busy= 0;
COM3.RX_Cnt = 0;
COM3.RX_TimeOut = 0;
COM3.B_RX_OK = 0;
for(i=0; i<COM_TX3_Lenth; i++) TX3_Buffer = 0;
for(i=0; i<COM_RX3_Lenth; i++) RX3_Buffer = 0;
if((COMx->UART_Mode == UART_9bit_BRTx) || (COMx->UART_Mode == UART_8bit_BRTx)) //可变波特率
{
if(COMx->UART_Polity > Polity_3) return 2; //错误
UART3_Polity(COMx->UART_Polity); //指定中断优先级(低到高) Polity_0,Polity_1,Polity_2,Polity_3
if(COMx->UART_Mode == UART_9bit_BRTx) S3_9bit(); //9bit
else S3_8bit(); //8bit
j = (MAIN_Fosc / 4) / COMx->UART_BaudRate; //按1T计算
if(j >= 65536UL) return 2; //错误
j = 65536UL - j;
if(COMx->UART_BRT_Use == BRT_Timer3)
{
S3_BRT_UseTimer3(); //S3 BRT Use Timer3;
TH3 = (u8)(j>>8);
TL3 = (u8)j;
T4T3M = 0x0a; //Timer3 set As Timer, 1T mode, Start timer3
}
else if(COMx->UART_BRT_Use == BRT_Timer2)
{
AUXR &= ~(1<<4); //Timer stop
S3_BRT_UseTimer2(); //S3 BRT Use Timer2;
AUXR &= ~(1<<3); //Timer2 set As Timer
AUXR |=(1<<2); //Timer2 set as 1T mode
TH2 = (u8)(j>>8);
TL2 = (u8)j;
IE2&= ~(1<<2); //禁止中断
AUXR |=(1<<4); //Timer run enable
}
else return 2; //错误
}
else return 2; //模式错误
if(COMx->UART_Interrupt == ENABLE) S3_Int_Enable(); //允许中断
else S3_Int_Disable(); //禁止中断
if(COMx->UART_RxEnable == ENABLE) S3_RX_Enable(); //允许接收
else S3_RX_Disable(); //禁止接收
P_SW2 = (P_SW2 & ~2) | (COMx->UART_P_SW & 0x02); //切换IO
return 0;
}
#endif
#ifdef UART4
if(UARTx == UART4)
{
COM4.id = 3;
COM4.TX_read = 0;
COM4.TX_write = 0;
COM4.B_TX_busy= 0;
COM4.RX_Cnt = 0;
COM4.RX_TimeOut = 0;
COM4.B_RX_OK = 0;
for(i=0; i<COM_TX4_Lenth; i++) TX4_Buffer = 0;
for(i=0; i<COM_RX4_Lenth; i++) RX4_Buffer = 0;
if((COMx->UART_Mode == UART_9bit_BRTx) || (COMx->UART_Mode == UART_8bit_BRTx)) //可变波特率
{
if(COMx->UART_Polity > Polity_3) return 2; //错误
UART4_Polity(COMx->UART_Polity); //指定中断优先级(低到高) Polity_0,Polity_1,Polity_2,Polity_3
if(COMx->UART_Mode == UART_9bit_BRTx) S4_9bit(); //9bit
else S4_8bit(); //8bit
j = (MAIN_Fosc / 4) / COMx->UART_BaudRate; //按1T计算
if(j >= 65536UL) return 2; //错误
j = 65536UL - j;
if(COMx->UART_BRT_Use == BRT_Timer4)
{
S4_BRT_UseTimer4(); //S4 BRT Use Timer4;
TH4 = (u8)(j>>8);
TL4 = (u8)j;
T4T3M = 0xa0; //Timer4 set As Timer, 1T mode, Start timer4
}
else if(COMx->UART_BRT_Use == BRT_Timer2)
{
AUXR &= ~(1<<4); //Timer stop
S4_BRT_UseTimer2(); //S4 BRT Use Timer2;
AUXR &= ~(1<<3); //Timer2 set As Timer
AUXR |=(1<<2); //Timer2 set as 1T mode
TH2 = (u8)(j>>8);
TL2 = (u8)j;
IE2&= ~(1<<2); //禁止中断
AUXR |=(1<<4); //Timer run enable
}
else return 2; //错误
}
else return 2; //模式错误
if(COMx->UART_Interrupt == ENABLE) S4_Int_Enable(); //允许中断
else S4_Int_Disable(); //禁止中断
if(COMx->UART_RxEnable == ENABLE) S4_RX_Enable(); //允许接收
else S4_RX_Disable(); //禁止接收
P_SW2 = (P_SW2 & ~4) | (COMx->UART_P_SW & 0x04); //切换IO
return 0;
}
#endif
return 2; //错误
}
这是定时器0初始化:
void Systick_Init(void)reentrant
{
unsigned int temp;
AUXR &= 0x7F; //定时器时钟12T模式
TMOD &= 0xF0; //设置定时器模式自动重装载
//根据OS_TICKS_PER_SEC设置值来确认定时器初始值
temp = 65536 - MAIN_Fosc/OS_TICKS_PER_SEC/12;
TL0 = temp%256 ;
TH0 = temp/256 ;
TF0 = 0; //清除TF0标志
TR0 = 1; //定时器0开始计时
ET0 = 1; //使能定时器中断
}
另外还用到定时器4
void IR_init(void)//红外初始化:20键
{
INTCLKO |= 0X10;//使能 INT2 下降沿中断
P3SR = 0;
T4T3M &= 0xDF; //定时器时钟12T模式
T4L = 0; //设置定时初始值
T4H = 0; //设置定时初始值
T4T3M &= 0x7f; //定时器4停止计时
EA = 1;
}
问题描述:当串口1串口2共用定时器2作波特率时,都能正常工作;当串口1用定时器1串口2用
定时器2作波特率时串口1不工作,串口2、定时器0、定时器4能正常工作。
谢谢。
大家好,关于您提到的“串口1使用定时器1作为波特率发生器时无法工作”的问题,以下为专业分析及建议:
首先,从代码结构来看,串口1的初始化函数 XC1init 中设置了 UARTBRTUse = BRTTimer1,而当改为 BRTTimer2 时可以正常工作。这表明问题可能与定时器1的配置或资源冲突有关。
一、可能原因分析
1. 定时器1未正确初始化
若定时器1未按照波特率计算方式进行配置(如计数模式、预分频值、自动重载值等),可能导致其输出频率不符合串口所需的波特率要求,从而导致通信失败。
2. 定时器1与其他外设冲突
检查是否在其他地方对定时器1进行了配置或占用(如PWM、ADC触发等),若存在资源冲突,可能导致定时器1无法正常工作。
3. 引脚复用配置错误
串口1使用的P30和P31引脚是否已正确配置为串口功能?若引脚未正确设置为UART模式,即使定时器1正常工作,串口也无法收发数据。
4. 中断优先级或使能问题
串口1的中断是否被正确使能?同时检查中断服务函数是否被正确注册并执行。若中断未响应,也可能导致通信异常。
5. 波特率计算错误
确保 BaudRate 值符合定时器1的计数范围,且计算方式正确。例如,若系统时钟为11.0592MHz,波特率为9600时,定时器1的初值应为 (230400 / 9600) - 1 = 23(假设使用8位模式)。
6. 硬件连接或电平问题
检查串口1的TXD和RXD是否连接正确,是否存在短路或断路;同时确认外部设备的电平是否匹配(如TTL/RS232转换芯片)。
二、建议排查步骤
1. 检查定时器1的配置
确认定时器1的模式(如方式0/1/2)、预分频值、自动重载值是否符合波特率计算要求,并确保其已启动。
2. 验证引脚配置
使用调试工具或示波器检测P30和P31是否有信号输出,确认引脚是否被正确配置为UART功能。
3. 查看中断配置
确保串口1的中断使能位已设置,并检查中断服务函数是否被正确调用。
4. 对比串口2配置
由于串口2使用定时器2可正常工作,建议对比两者的配置差异,特别是定时器参数、引脚定义和中断设置。
5. 测试不同波特率
尝试使用不同的波特率值,观察是否仍存在问题,以排除特定波特率下的配置错误。
6. 查阅数据手册
参考芯片的数据手册,确认定时器1与串口1的兼容性,以及是否支持通过定时器1作为波特率源。
三、总结
串口1使用定时器1作为波特率发生器时无法工作,可能涉及定时器配置、引脚设置、中断控制或多任务资源冲突等多个方面。建议按上述步骤逐一排查,并结合调试工具进行验证。如问题仍未解决,可提供更详细的代码片段或硬件配置信息,以便进一步分析。
如有其他疑问,欢迎继续交流。
[本文内容由国芯人工智能辅助生成,仅供参考] 请问用的哪个型号?
STC15W408AS没有定时1,串口不能选定时器1作波特率发生器
ercircle 发表于 2025-9-1 11:39
请问用的哪个型号?
STC8H8K64UTSSOP20。能留个邮箱吗,我把资料发给您? kdusrasf 发表于 2025-9-1 11:39
STC8H8K64UTSSOP20
可以用AiCube生成的
拿这个试下,串口1定时器1,串口2定时器2,8h8K64U测试正常:
kdusrasf 发表于 2025-9-1 11:39
STC8H8K64UTSSOP20。能留个邮箱吗,我把资料发给您?
可直接上传程序文件,程序涉及商业机密(怕同行抄袭的)或无关部分可以删除,但要保证编译通过,尽量提供可复现问题的最简程序 这是8G系列串口1使用定时器1做波特率发生器的程序,测试通过,8H系列也通用的
https://www.stcaimcu.com/thread-16321-1-1.html
用这个测试程序来修改:
#include "stc8h.h" //包含STC8H的头文件
#include "intrins.h" //使用_nop_()函数所必须要包含的头文件,
//否则延时函数中调用的_nop_()函数没有被头文件引用过来,
//会导致编译器找不到这个而函数而报错。
unsigned char int0_flag = 0; //定义1个位变量,INT0事件位变量标志,记录INT0已产生中断
// 供主循环查询INT0是否已产生中断,在主循环中处理INT0的中断事件任务,不堵塞其他中断
unsigned char int1_flag = 0; //定义1个位变量,INT1事件位变量标志,记录INT1已产生中断
// 供主循环查询INT1是否已产生中断,在主循环中处理INT1的中断事件任务,不堵塞其他中断
unsigned char int2_flag = 0; //定义1个位变量,INT2事件位变量标志,记录INT2已产生中断
// 供主循环查询INT2是否已产生中断,在主循环中处理INT2的中断事件任务,不堵塞其他中断
unsigned char int3_flag = 0; //定义1个位变量,INT3事件位变量标志,记录INT3已产生中断
// 供主循环查询INT3是否已产生中断,在主循环中处理INT3的中断事件任务,不堵塞其他中断
unsigned char t0_flag = 0; //定义1个位变量,T0事件位变量标志,记录定时器0已产生中断
// 供主循环查询定时器0是否已产生中断,在主循环中处理定时器0的中断事件任务,不堵塞其他中断
unsigned char t1_flag = 0; //定义1个位变量,T1事件位变量标志,记录定时器1已产生中断
// 供主循环查询定时器1是否已产生中断,在主循环中处理定时器1的中断事件任务,不堵塞其他中断
unsigned char t3_flag = 0; //定义1个位变量,T3事件位变量标志,记录定时器3已产生中断
// 供主循环查询定时器3是否已产生中断,在主循环中处理定时器3的中断事件任务,不堵塞其他中断
unsigned char t4_flag = 0; //定义1个位变量,T4事件位变量标志,记录定时器4已产生中断
// 供主循环查询定时器4是否已产生中断,在主循环中处理定时器4的中断事件任务,不堵塞其他中断
unsigned char uart1_txflag = 0; //定义1个位变量,UART1事件位变量标志,记录UART1已产生发送中断
// 供主循环查询UART1是否已产生发送中断,在主循环中处理UART1的中断事件任务,不堵塞其他中断
unsigned char uart1_rxflag = 0; //定义1个位变量,UART1事件位变量标志,记录UART1已产生接收中断
// 供主循环查询UART1是否已产生接收中断,在主循环中处理UART1的中断事件任务,不堵塞其他中断
unsigned char uart2_txflag = 0; //定义1个位变量,UART2事件位变量标志,记录UART2已产生发送中断
// 供主循环查询UART2是否已产生发送中断,在主循环中处理UART2的中断事件任务,不堵塞其他中断
unsigned char uart2_rxflag = 0; //定义1个位变量,UART2事件位变量标志,记录UART2已产生接收中断
// 供主循环查询UART2是否已产生接收中断,在主循环中处理UART2的中断事件任务,不堵塞其他中断
unsigned char uart3_txflag = 0; //定义1个位变量,UART3事件位变量标志,记录UART3已产生发送中断
// 供主循环查询UART3是否已产生发送中断,在主循环中处理UART3的中断事件任务,不堵塞其他中断
unsigned char uart3_rxflag = 0; //定义1个位变量,UART3事件位变量标志,记录UART3已产生接收中断
// 供主循环查询UART3是否已产生接收中断,在主循环中处理UART3的中断事件任务,不堵塞其他中断
unsigned char uart4_txflag = 0; //定义1个位变量,UART4事件位变量标志,记录UART4已产生发送中断
// 供主循环查询UART4是否已产生发送中断,在主循环中处理UART1的中断事件任务,不堵塞其他中断
unsigned char uart4_rxflag = 0; //定义1个位变量,UART4事件位变量标志,记录UART4已产生接收中断
// 供主循环查询UART4是否已产生接收中断,在主循环中处理UART4的中断事件任务,不堵塞其他中断
void Timer0_Init(void) //定时器0初始化,2秒@40.000MHz
{
TM0PS = 0x65; //设置定时器时钟预分频 ( 注意:并非所有系列都有此寄存器,详情请查看数据手册 )
AUXR &= 0x7F; //定时器时钟12T模式
TMOD &= 0xF0; //设置定时器模式
TL0 = 0xB1; //设置定时初始值
TH0 = 0x00; //设置定时初始值
TF0 = 0; //清除TF0标志
TR0 = 1; //定时器0开始计时
ET0 = 1; //使能定时器0中断
}
void Timer1_Init(void) //定时器1初始化,500毫秒@40.000MHz
{
TM1PS = 0x19; //设置定时器时钟预分频 ( 注意:并非所有系列都有此寄存器,详情请查看数据手册 )
AUXR &= 0xBF; //定时器时钟12T模式
TMOD &= 0x0F; //设置定时器模式
TL1 = 0x99; //设置定时初始值
TH1 = 0x05; //设置定时初始值
TF1 = 0; //清除TF1标志
TR1 = 1; //定时器1开始计时
ET1 = 1; //使能定时器1中断
}
void Timer3_Init(void) //100毫秒@40.000MHz
{
TM3PS = 0x3D; //设置定时器时钟预分频 ( 注意:并非所有系列都有此寄存器,详情请查看数据手册 )
T4T3M |= 0x02; //定时器时钟1T模式
T3L = 0xFC; //设置定时初始值
T3H = 0x03; //设置定时初始值
T4T3M |= 0x08; //定时器3开始计时
IE2 |= 0x20; //使能定时器3中断
}
void Timer4_Init(void) //200毫秒@40.000MHz
{
TM4PS = 0x7A; //设置定时器时钟预分频 ( 注意:并非所有系列都有此寄存器,详情请查看数据手册 )
T4T3M |= 0x20; //定时器时钟1T模式
T4L = 0xEF; //设置定时初始值
T4H = 0x01; //设置定时初始值
T4T3M |= 0x80; //定时器4开始计时
IE2 |= 0x40; //使能定时器4中断
}
void Uart1_Init(void) //115200bps@40.000MHz
{
SCON = 0x50; //8位数据,可变波特率
AUXR |= 0x01; //串口1选择定时器2为波特率发生器
AUXR |= 0x04; //定时器时钟1T模式
T2L = 0xA9; //设置定时初始值
T2H = 0xFF; //设置定时初始值
AUXR |= 0x10; //定时器2开始计时
ES = 1; //使能串口1中断
}
void Uart2_Init(void) //115200bps@40.000MHz
{
S2CON = 0x50; //8位数据,可变波特率
AUXR |= 0x04; //定时器时钟1T模式
T2L = 0xA9; //设置定时初始值
T2H = 0xFF; //设置定时初始值
AUXR |= 0x10; //定时器2开始计时
IE2 |= 0x01; //使能串口2中断
}
void Uart3_Init(void) //115200bps@40.000MHz
{
S3CON = 0x10; //8位数据,可变波特率
S3CON &= 0xBF; //串口3选择定时器2为波特率发生器
AUXR |= 0x04; //定时器时钟1T模式
T2L = 0xA9; //设置定时初始值
T2H = 0xFF; //设置定时初始值
AUXR |= 0x10; //定时器2开始计时
IE2 |= 0x08; //使能串口3中断
}
void Uart4_Init(void) //115200bps@40.000MHz
{
S4CON = 0x10; //8位数据,可变波特率
S4CON &= 0xBF; //串口4选择定时器2为波特率发生器
AUXR |= 0x04; //定时器时钟1T模式
T2L = 0xA9; //设置定时初始值
T2H = 0xFF; //设置定时初始值
AUXR |= 0x10; //定时器2开始计时
IE2 |= 0x10; //使能串口4中断
}
void main (void)
{
P_SW2 |= 0x80; //允许访问扩展的特殊寄存器,XFR
//32位8051需要使用下面3句进行初始化
// EAXFR = 1; //允许访问扩展的特殊寄存器,XFR
// WTST = 0; //设置取程序代码等待时间,赋值为0表示不等待,程序以最快速度运行
// CKCON = 0; //设置访问片内的xdata速度,赋值为0表示用最快速度访问,不增加额外的等待时间
P0M0 = 0x00; P0M1 = 0x00; //设置 P0 口为准双向口模式
P1M0 = 0x00; P1M1 = 0x00; //设置 P1 口为准双向口模式
P2M0 = 0x00; P2M1 = 0x00; //设置 P2 口为准双向口模式
P3M0 = 0x00; P3M1 = 0x00; //设置 P3 口为准双向口模式
P3M0 = 0x00; P3M1 = 0x0c; //P32、P33设置为高阻输入(需要同步开启上拉电阻)
P4M0 = 0x00; P4M1 = 0x00; //设置 P4 口为准双向口模式
P5M0 = 0x00; P5M1 = 0x00; //设置 P5 口为准双向口模式
P6M0 = 0x00; P6M1 = 0x00; //设置 P6 口为准双向口模式
P7M0 = 0x00; P7M1 = 0x00; //设置 P7 口为准双向口模式
P3PU = 0x0c; //P32、P33打开上拉电阻
int0_flag = 0; //初始化用户标志位
int1_flag = 0; //初始化用户标志位
int2_flag = 0; //初始化用户标志位
int3_flag = 0; //初始化用户标志位
t0_flag = 0; //初始化用户标志位
t1_flag = 0; //初始化用户标志位
t3_flag = 0; //初始化用户标志位
t4_flag = 0; //初始化用户标志位
uart1_txflag = 0; //初始化用户标志位
uart1_rxflag = 0; //初始化用户标志位
uart2_txflag = 0; //初始化用户标志位
uart2_rxflag = 0; //初始化用户标志位
uart3_txflag = 0; //初始化用户标志位
uart3_rxflag = 0; //初始化用户标志位
uart4_txflag = 0; //初始化用户标志位
uart4_rxflag = 0; //初始化用户标志位
IT0 = 0; //使能 INT0 上升沿和下降沿中断
// IT0 = 1; //使能 INT0 下降沿中断
EX0 = 1; //使能 INT0 中断
IE0 = 0; //清INT0中断标志
// IT1 = 0; //使能 INT1 上升沿和下降沿中断
IT1 = 1; //使能 INT1 下降沿中断
EX1 = 1; //使能 INT1 中断
IE1 = 0; //清INT1中断标志
INTCLKO |= 0x10; //使能INT2中断
INTCLKO |= 0x20; //使能INT3中断
Timer0_Init(); //调用定时器0初始化函数
Timer1_Init(); //调用定时器1初始化函数
Timer3_Init(); //调用定时器0初始化函数
Timer4_Init(); //调用定时器1初始化函数
Uart1_Init(); //调用UART1初始化函数
Uart2_Init(); //调用UART2初始化函数
Uart3_Init(); //调用UART3初始化函数
Uart4_Init(); //调用UART4初始化函数
EA = 1; //总中断允许位打开
P40 = 0; //打开LED灯供电
while(1) //主循环中查询需要处理的各种事件
{
/*本演示程序中,主循环查询各中断有无需要继续处理的事件的次序,
依次是 INTx/TIMERx/UARTx, 用户可以自己根据实际情况,
调整查询各中断有无需要继续处理的事件的优先次序*/
//查询外部中断0事件
if(int0_flag) //主循环中查询,INT0是否已产生中断,是否有需要处理的INT 0事件
{
int0_flag = 0; //清0,INT0事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询外部中断1事件
if(int1_flag) //主循环中查询,INT1是否已产生中断,是否有需要处理的INT1事件
{
int1_flag = 0; //清0,INT1事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询外部中断2事件
if(int2_flag) //主循环中查询,INT2是否已产生中断,是否有需要处理的INT2事件
{
int2_flag = 0; //清0,INT2事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询外部中断3事件
if(int3_flag) //主循环中查询,INT3是否已产生中断,是否有需要处理的INT3事件
{
int3_flag = 0; //清0,INT3事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询定时器0中断事件
if(t0_flag) //主循环中查询,定时器0是否已产生中断,是否有需要处理的定时器0事件
{
t0_flag = 0; //清0,T0事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询定时器1中断事件
if(t1_flag) //主循环中查询,定时器1是否已产生中断,是否有需要处理的定时器1事件
{
t1_flag = 0; //清0,T1事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询定时器3中断事件
if(t3_flag) //主循环中查询,定时器3是否已产生中断,是否有需要处理的定时器3事件
{
t3_flag = 0; //清0,T3事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询定时器4中断事件
if(t4_flag) //主循环中查询,定时器4是否已产生中断,是否有需要处理的定时器4事件
{
t4_flag = 0; //清0,T4事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询串口1中断事件
if(uart1_txflag) //主循环中查询,UART1是否已产生发送中断,是否有需要处理的UART1发送事件
{
uart1_txflag = 0; //清0,UART1发送事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
if(uart1_rxflag) //主循环中查询,UART1是否已产生接收中断,是否有需要处理的UART1接收事件
{
uart1_rxflag = 0; //清0,UART1接收事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询串口2中断事件
if(uart2_txflag) //主循环中查询,UART2是否已产生发送中断,是否有需要处理的UART2发送事件
{
uart2_txflag = 0; //清0,UART2发送事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
if(uart2_rxflag) //主循环中查询,UART2是否已产生接收中断,是否有需要处理的UART2接收事件
{
uart2_rxflag = 0; //清0,UART2接收事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询串口3中断事件
if(uart3_txflag) //主循环中查询,UART3是否已产生发送中断,是否有需要处理的UART3发送事件
{
uart3_txflag = 0; //清0,UART3发送事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
if(uart3_rxflag) //主循环中查询,UART3是否已产生接收中断,是否有需要处理的UART3接收事件
{
uart3_rxflag = 0; //清0,UART3接收事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
//查询串口4中断事件
if(uart4_txflag) //主循环中查询,UART4是否已产生发送中断,是否有需要处理的UART4发送事件
{
uart4_txflag = 0; //清0,UART4发送事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
if(uart4_rxflag) //主循环中查询,UART4是否已产生接收中断,是否有需要处理的UART4接收事件
{
uart4_rxflag = 0; //清0,UART4接收事件位变量标志
_nop_(); //用户在此添加需要处理的事件
_nop_();
}
}
}
void int0_isr(void) interrupt INT0_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
int0_flag = 1; // int0_flag置1是通知主循环处理部分INT0中断事件不需要特急处理的任务
//置1,记录INT0已产生中断,供主循环查询判断有无需处理的INT0任务
if(INT0) //边沿中断,进入后再次判断电平从而判断是什么样的电平
{
_nop_(); //判断为高电平,则当前为上升沿
_nop_(); //可以在这里插入断点进行观察现象
}
else
{
_nop_(); //判断为低电平,则当前为下降沿
_nop_(); //可以在这里插入断点进行观察现象
}
}
//INT0中断服务程序,INT0_VECTOR在stc8h头文件中已宏定义为0
void int1_isr(void) interrupt INT1_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
int1_flag = 1; // int1_flag置1是通知主循环处理部分INT1中断事件不需要特急处理的任务
}
//INT1中断服务程序,INT1_VECTOR在stc8h头文件中已宏定义为2
void int2_isr(void) interrupt INT2_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
int2_flag = 1; // int2_flag置1是通知主循环处理部分INT2中断事件不需要特急处理的任务
}
//INT2中断服务程序,INT2_VECTOR在stc8h头文件中已宏定义为10
void int3_isr(void) interrupt INT3_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
int3_flag = 1; // int3_flag置1是通知主循环处理部分INT3中断事件不需要特急处理的任务
}
//INT3中断服务程序,INT3_VECTOR在stc8h头文件中已宏定义为11
void Timer0_Isr(void) interrupt TMR0_VECTOR //定时器0中断服务程序
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
t0_flag = 1; // t0_flag置1是通知主循环处理部分T0中断事件不需要特急处理的任务
//置1,记录定时器0已产生中断,供主循环查询判断有无需处理的定时器0任务
}
//定时器0中断服务程序,TMR0_VECTOR在stc8h头文件中已宏定义为1
void Timer1_Isr(void) interrupt TMR1_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
t1_flag = 1; // t1_flag置1是通知主循环处理部分T1中断事件不需要特急处理的任务
//置1,记录定时器1已产生中断,供主循环查询判断有无需处理的定时器1任务
}
//定时器1中断服务程序,TMR1_VECTOR在stc8h头文件中已宏定义为3
void Timer3_Isr(void) interrupt TMR3_VECTOR返回版块
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
t3_flag = 1; // t3_flag置1是通知主循环处理部分T3中断事件不需要特急处理的任务
//置1,记录定时器3已产生中断,供主循环查询判断有无需处理的定时器1任务
}返回版块
//定时器3中断服务程序,TMR3_VECTOR在stc8h头文件中已宏定义为19
void Timer4_Isr(void) interrupt TMR4_VECTOR
{
_nop_(); //特急处理,中断服务程序中尽量少执行长的任务,防止堵塞其他中断
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
t4_flag = 1; // t1_flag置4是通知主循环处理部分T4中断事件不需要特急处理的任务
//置1,记录定时器4已产生中断,供主循环查询判断有无需处理的定时器1任务
}
//定时器4中断服务程序,TMR4_VECTOR在stc8h头文件中已宏定义为20
void Uart1_Isr(void) interrupt UART1_VECTOR
{
if (TI) //检测串口1发送中断
{
TI = 0; //清除串口1发送中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart1_txflag = 1; // uart1_txflag置1是通知主循环处理部分串口1发送中断事件不需要特急处理的任务
//置1,记录UART1已产生发送中断,供主循环查询判断有无需处理的UART1发送任务
}
if (RI) //检测串口1接收中断
{
RI = 0; //清除串口1接收中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart1_rxflag = 1; // uart1_rxflag置1是通知主循环处理部分串口1接收中断事件不需要特急处理的任务
//置1,记录UART1已产生接收中断,供主循环查询判断有无需处理的UART1接收任务
}
}
//UART1中断服务程序,UART1_VECTOR在stc8h头文件中已宏定义为4
void Uart2_Isr(void) interrupt UART2_VECTOR
{
if (S2CON & 0x02) //检测串口2发送中断
{
S2CON &= ~0x02; //清除串口2发送中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart2_txflag = 1; // uart2_txflag置1是通知主循环处理部分串口2发送中断事件不需要特急处理的任务
//置1,记录UART2已产生发送中断,供主循环查询判断有无需处理的UART2发送任务
}
if (S2CON & 0x01) //检测串口2接收中断
{
S2CON &= ~0x01; //清除串口2接收中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart2_rxflag = 1; // uart2_rxflag置1是通知主循环处理部分串口2接收中断事件不需要特急处理的任务
//置1,记录UART2已产生接收中断,供主循环查询判断有无需处理的UART2接收任务
}
}
//UART2中断服务程序,UART2_VECTOR在stc8h头文件中已宏定义为8
void Uart3_Isr(void) interrupt UART3_VECTOR
{
if (S3CON & 0x02) //检测串口3发送中断
{
S3CON &= ~0x02; //清除串口3发送中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart3_txflag = 1; // uart3_txflag置1是通知主循环处理部分串口3发送中断事件不需要特急处理的任务
//置1,记录UART3已产生发送中断,供主循环查询判断有无需处理的UART3发送任务
}
if (S3CON & 0x01) //检测串口3接收中断
{
S3CON &= ~0x01; //清除串口3接收中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart3_rxflag = 1; // uart3_rxflag置1是通知主循环处理部分串口3接收中断事件不需要特急处理的任务
//置1,记录UART3已产生接收中断,供主循环查询判断有无需处理的UART3接收任务
}
}
//UART3中断服务程序,UART3_VECTOR在stc8h头文件中已宏定义为17
void Uart4_Isr(void) interrupt UART4_VECTOR
{
if (S4CON & 0x02) //检测串口4发送中断
{
S4CON &= ~0x02; //清除串口4发送中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart4_txflag = 1; // uart4_txflag置1是通知主循环处理部分串口4发送中断事件不需要特急处理的任务
//置1,记录UART4已产生发送中断,供主循环查询判断有无需处理的UART4发送任务
}
if (S4CON & 0x01) //检测串口4接收中断
{
S4CON &= ~0x01; //清除串口4接收中断请求位
_nop_(); //特急处理
//以上程序代表部分需特急处理的中断事件,可在中断服务程序中直接处理
//但时间不要太长,否则会影响其他中断事件的实时响应速度
uart4_rxflag = 1; // uart4_rxflag置1是通知主循环处理部分串口4接收中断事件不需要特急处理的任务
//置1,记录UART4已产生接收中断,供主循环查询判断有无需处理的UART4接收任务
}
}
//UART4中断服务程序,UART4_VECTOR在stc8h头文件中已宏定义为18
神农鼎 发表于 2025-9-1 12:48
用这个测试程序来修改:
程序测试OK,准备拿另外一个模板来改。谢谢。
页:
[1]